3 1 M ay 2 00 4 Markov ’ s Transformation of Series and the WZ Method
نویسنده
چکیده
In a well forgotten memoir of 1890, Andrei Markov devised a convergence acceleration technique based on a series transformation which is very similar to what is now known as the WilfZeilberger (WZ) method. We review Markov’s work, put it in the context of modern computeraided WZ machinery, and speculate about possible reasons of the memoir being shelved for so long.
منابع مشابه
un 2 00 4 Markov ’ s Transformation of Series and the WZ Method
In a well forgotten memoir of 1890, Andrei Markov devised a convergence acceleration technique based on a series transformation which is very similar to what is now known as the WilfZeilberger (WZ) method. We review Markov’s work, put it in the context of modern computeraided WZ machinery, and speculate about possible reasons of the memoir being shelved for so long.
متن کاملm at h . C A ] 1 6 Ju n 20 04 Markov ’ s Transformation of Series and the WZ Method
In a well forgotten memoir of 1890, Andrei Markov devised a convergence acceleration technique based on a series transformation which is very similar to what is now known as the WilfZeilberger (WZ) method. We review Markov’s work, put it in the context of modern computeraided WZ machinery, and speculate about possible reasons of the memoir being shelved for so long.
متن کاملSimultaneous Generation for Zeta Values by the Markov-WZ Method
By application of the Markov-WZ method, we prove a more general form of a bivariate generating function identity containing, as particular cases, Koecher’s and Almkvist-Granville’s Apéry-like formulae for odd zeta values. As a consequence, we get a new identity producing Apéry-like series for all ζ(2n+ 4m+ 3), n,m ≥ 0, convergent at the geometric rate with ratio 2−10.
متن کامل2 00 9 About the WZ - pairs which prove Ramanujan series
Observing those WZ-demostrable generalizations of the Ramanujan-type series that were already known, we get the insight to make some assumptions concerning the rational parts of those WZ-pairs that prove them. Based on those assumptions, we develop a new strategy in order to prove Ramanujantype series for 1/π. Using it, we find more WZ-demonstrable generalizations, and so new WZ-proofs, for the...
متن کاملm at h . N T ] 1 4 M ay 2 00 9 CONSTRUCTING WEYL GROUP MULTIPLE DIRICHLET SERIES
Let Φ be a reduced root system of rank r. A Weyl group multiple Dirichlet series for Φ is a Dirichlet series in r complex variables s1, . . . , sr, initially converging for Re(si) sufficiently large, that has meromorphic continuation to C and satisfies functional equations under the transformations of C corresponding to the Weyl group of Φ. A heuristic definition of such series was given in [BB...
متن کامل